145. 二叉树的后序遍历

题目#

给定一个二叉树,返回它的 后序 遍历。

示例:

输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

思路#

同样,递归很简单。

相信大家在最初学习二叉树的三种遍历时,便听说过“二叉树的后序遍历非递归解法非常麻烦”这一说法,这一说法所言非虚。

但我们可以换一个思路,后序遍历的顺序是 左-右-根,那我们可以做一个 根-右-左 的遍历,最后做一个 reverse 即可得到后序遍历的结果。

根-右-左 的遍历顺序类似于先序遍历。

代码#

递归#

func postorderTraversal(root *TreeNode) []int {
res := []int{}
postorder(root, &res)
return res
}
func postorder(root *TreeNode, res *[]int) {
if root != nil {
postorder(root.Left, res)
postorder(root.Right, res)
*res = append(*res, root.Val)
}
}

迭代#

func postorderTraversal(root *TreeNode) []int {
res := []int{}
if root == nil {
return res
}
stack := []*TreeNode{}
stack = append(stack, root)
for len(stack) != 0 {
node := stack[len(stack)-1]
stack = stack[:len(stack)-1]
res = append(res, node.Val)
if node.Left != nil {
stack = append(stack, node.Left)
}
if node.Right != nil {
stack = append(stack, node.Right)
}
}
reverse(&res)
return res
}
func reverse(arr *[]int) {
i, j := 0, len(*arr)-1
for i < j {
(*arr)[i], (*arr)[j] = (*arr)[j], (*arr)[i]
i++
j--
}
}
Last updated on